skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mazaheri, Bijan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Agrawal, Shipra; Roth, Aaron (Ed.)
    We consider the problem of \emph{identifying,} from statistics, a distribution of discrete random variables $$X_1 \ldots,X_n$$ that is a mixture of $$k$$ product distributions. The best previous sample complexity for $$n \in O(k)$$ was $$(1/\zeta)^{O(k^2 \log k)}$$ (under a mild separation assumption parameterized by $$\zeta$$). The best known lower bound was $$\exp(\Omega(k))$$. It is known that $$n\geq 2k-1$$ is necessary and sufficient for identification. We show, for any $$n\geq 2k-1$$, how to achieve sample complexity and run-time complexity $$(1/\zeta)^{O(k)}$$. We also extend the known lower bound of $$e^{\Omega(k)}$$ to match our upper bound across a broad range of $$\zeta$$. Our results are obtained by combining (a) a classic method for robust tensor decomposition, (b) a novel way of bounding the condition number of key matrices called Hadamard extensions, by studying their action only on flattened rank-1 tensors. 
    more » « less